121=8x+x^2

Simple and best practice solution for 121=8x+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 121=8x+x^2 equation:



121=8x+x^2
We move all terms to the left:
121-(8x+x^2)=0
We get rid of parentheses
-x^2-8x+121=0
We add all the numbers together, and all the variables
-1x^2-8x+121=0
a = -1; b = -8; c = +121;
Δ = b2-4ac
Δ = -82-4·(-1)·121
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{137}}{2*-1}=\frac{8-2\sqrt{137}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{137}}{2*-1}=\frac{8+2\sqrt{137}}{-2} $

See similar equations:

| x-3123123=21312 | | 26-6•(3-5b)=4(-2+8b) | | 4+v+v=4-6v | | 5x²−3x=(7x²+5x)−(2x²+16) | | D(27)=186,000t | | 2v/8-16=24 | | 343=-4p-7(-3+6p) | | 6n=-n+49 | | -11+2x=6x-3 | | 2w/3+21=41 | | 8z2+8z–3=0 | | 3e-6=95 | | 5y2+5y+9=0 | | v+3=-7v+3 | | 0=x^2+5x-144 | | 18+5t=23 | | 180-3x=6x-40+x+2 | | 3x=2-x=2x+1 | | z2/3=z/2+5/6 | | 4+3c=22 | | 4c+3=22 | | 5x+45=290 | | x-1/2=3 | | 5x+45=290;x | | 3s-14=50 | | -8(8+x)-5=-117 | | 8y+16=56 | | 2(7k-2)=-102 | | 9y+10=10y-15 | | 3x+2-12/x=x(2)-2(2x+1) | | 5=0.1d | | 28=2-x |

Equations solver categories